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Abstract. Following the geometrical concept of pseudo-Euclidean Hurwitz pairs, we give 
their systematic classification according to the relationship with real Clifford algebras. 
Next, a generalisation of the pairs to the curvilinear case is given and it is shown that they 
provide a convenient framework for the Kaluia-Klein theories. 

1. Introduction 

During the last few years Kaluia’s (1921) idea that the unifying stage of the world 
should be chosen as a high-dimensional space has gained popularity. One of the 
reasons is that in the context of the Kaluia-Klein theories the gauge group arises in 
a natural fashion as isometries of the internal space. Due to the ‘gravitational’ 
interaction in a high-dimensional spacetime the supplementary dimensions are 
somehow curled up to the form of a compact internal space with a very small 
characteristic length scale comparable with the Planck length. Such a theory looks 
quite reasonable in the bosonic sector; cf Mecklenburg (l984), Wetterich (1983) and 
Arefeeva and Volovich (1985). On the other hand, fermions can be treated separately 
and there is still some freedom in choosing their spinor representations and in forming 
the field equations. This holds true because bosons and fermions are not treated within 
the same geometrical framework. Certainly one of the ways of unifying the theories 
is to postulate a supersymmetry (the Kaluza-Klein supergravity). 

In this paper we investigate another possibility of introducing a common framework 
for bosons and fermions. In order to do  this we are going to apply our notion of a 
pseudo-Euclidean Hurwitz pair (S, V )  as some generalisation of the hypercomplex 
numbers. We give complete classification of the pseudo-Euclidean Hurwitz pairs in 
terms of Clifford algebras; cf, e.g., Porteous (1981). Next we generalise the notion of 
holomorphic functions to regular mappingsf: S + V so that they satisfy the generalised 
Fueter equations which resemble some Weyl-like equations. The regular mappings 
form a spinor representation of the corresponding spin group. A connection with the 
usual Kaluia-Klein theories is obtained by considering a pseudo-Riemannian generali- 
sation of the pseudo-Euclidean Hurwitz pairs. 

Thus, in addition to a new mathematical framework of the Kaluza-Klein theories 
within the concept of a pseudo-Euclidean Hurwitz pair the paper provides constraints 
for the possible schemes as well as for the admissible types of their symmetries yielded 
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by the corresponding generalised Fueter equations and the associated Dirac fields (06 ) ,  
including the curved case (95). Physically, this is a kind of a selection rule for the 
admissible dimensions of the spacetime in question and for the field pattern. In each 
particular case the low-energy hadron spectrum may be investigated by the method of 
harmonic expansion; cf Mecklenburg (1984). An additional selection rule may be 
given by the requirement of compatibility of the algebraic structure of a Hurwitz pair 
with the global topological structure of the spacetime fibre bundle. It seems that this 
last conclusion includes cosmological implications. 

2. A geometrical realisation of some Clifford algebras as an extension of 
hypercomplex numbers 

Consider two real vector spaces S and V, equipped with non-degenerate pseudo- 
Euclidean real scalar products ( , )s and ( , ) v  with standard properties. For f, g, 
h E V ;  U, b, c E S, and a, p E R we suppose that 

( 4 6 ) s  E R ( f , g ) v E R  

(aa,  b)s  = .(a, b ) s  

( a , b + c ) s = ( a ,  b ) s + ( a , c ) s  

( b ,  0 ) s  = (a, b)s  ( g , f ) v  = S ( J ;  g ) v  S = 1 or -1 
(1) (4 81, =. (A g ) v  

(f; g + h )  v = ( J ;  g ) v  + ( A  h ) v .  

In S and V we choose some bases ( E , )  and ( eJ) ,  respectively, with CY = 1, . . . , dim S = p ;  
k = 1, . . . , dim V = n. We assume that p d n. For 

77 = [ T o p ] : =  [(Em, &@)SI K [ K j k l  := [(e,,  ek)V]  ( 2 )  
by relations ( l ) ,  we get immediately 

T 
77-1 [ 7 7 " p ]  V T = T  K - ' =  [ K J k ]  K =8K 

det 77 # 0 det K f 0. 

Now, without any loss of generality, we can choose the basis ( E , )  so that 

7 =diag(l , .  . . , 1, -1,. . . , -1) 
L 

f 
4 

p times 

(3) 

and hence T - ' =  7. The vectors from S and V have the form 

U = am&, E s 

f = fJeJ E V 

U " E R  

and 

f k  E R  

respectively. With the help of the metric tensors 77 and K we can pass from covariant 
quantities to the contravariant ones and conversely: 

a, = %,aP E "  = 77"PE" = K J k f k  & = KJkek 

a n  = T m p  a p  E" = 77,pE" f J =  K J k f k  e, = KJkek. 

Obviously, for J ;  g E V and a, b E S we have 

(a,  b )  = a"b, = a"bPqOp (A 8 )  = f J g J  = f J g k K J k .  
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The multiplication of elements of S by elements of V is defined as a mapping 

(i)  ( a + b ) f = a f + b f a n d a ( f + g ) = a f + a g f o r f , g E V a n d  a, b E S  
(ii) (a, a)& g )  = (aft ag) 
(iii) there exists the unit element eo in S with respect to the multiplication: e O f = f  

f o r f e  V. 
The R-linearity of the multiplication follows from (i): we have a ( a f )  = a(af) for 

Q E R. By (iii), the multiplication of vectors of V by a real number a is identified with 
the multiplication by ae0.  

The product af is uniquely determined by the multiplication scheme for base vectors: 

S x V + V with the properties 

(the generalised Hunvitz condition) 

a = 1,. . . , p j , k = l ,  ..., n. (4) k 
E Q ~ J  = c p  ek 

The above scheme, together with the postulates (l), yields the following formulae for 
the real structure constants c:,: 

= ( e k ,  
i.e. they are simply the matrix elements of E,  treated as an IFS-linear endomorphism 
of V; Adem (1975, 1978, 1980). 

Hereafter we shall require the irreducibility of the multiplication S x V + V, which 
means that it does not leave invariant proper subspaces of V. In such a case we shall 
call (V, S) a pseudo-Euclidean Hunvitz pair. 

In order to investigate the consequences of the most important condition (ii), let 
us rewrite it in the coordinate form: 

(af ,  a g ) V  = W a p f l f k [ ( E , e , ,  &pek)V+(Ege,, &,ek)vI 

= f a  ,ap fYk[ (  e', &,e, ) VK, ,  ( e s ,  Epek v + ( e r ,  EpeJ ) " K ,  ( e', &,ek VI 
P J ~  = ( a ,  a ) S ( f ; f ) v =  f f  7 m p K J k *  

Hence 

Cf,KrsCSkp + c;p KrsCska = 2 7 u p K j k  

or, equivalently, if In stands for the identity n x n matrix, 

c,cp + cpc, = 2774I" a, p = 1,. . . , d i m  S ( 5 )  

in the matrix notation 

c, := [ c;,] E, := K C ~ K - '  

It can easily be seen that the IFS-linearity of E,  together with relations (4) and (5) 
are equivalent to the conditions ( i )  and (ii). Besides, (5) yields the invertibility of Ca. 
When setting 

C, = iyaC, t fixed 

a = 1,. . . , p a # t  

where i denotes the imaginary unit, we arrive at the following system equivalent to (5): 

CIC = 77111" t fixed 

7, = --Ye Re ya = O  (7)  
a = 1,. . . , p 

{ru, ~ p Y p j ~ Y n ~ p + + p ~ a = 2 i j u p l n  

a f t  

a, p = 1, . . . , p a , p + t  
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where 

;iaP = %PI 7711 

vmP being chosen diagonal as in (3). Clearly, 

T,, = 1 or  -1. (9) 

From ( 7 )  it follows that -ym are generators of a real Clifford algebra C'r.ri with ( r ,  s) 
determined by the signature of := [ and by 

r + s = p - 1 .  (10) 

The matrices yo are chosen in the (imaginary) Majorana representation. Conversely, 
any pseudo-Euclidean Hurwitz pair (V ,  S )  is a geometrical realisation of a real Cliflord 
algebra C(r3s) ,  and the relationship is given by the conditions (6)-(9), ( r ,  s )  being 
determined by the signature of ;i and by (10). 

The above statement does not determine ( r ,  s)  uniquely. The precise result requires 
a deeper mathematical reasoning, given in a separate paper by Lawrynowicz et a1 (1988). 

3. Classification of pseudo-Euclidean Hunvitz pairs 

Let IF = R, C and W denote the real, complex and  quaternion number fields, and let 
M(N,  IF) be the algebra of N x N matrices over IF. In Lawrynowicz and  Rembielinski 
(1986) we have given a classification table of C(r3s )  modulo 8 in terms of M(N,IF), 
based on the famous periodicity theorem for real Clifford algebras; cf Atiyah er a1 
(1964). We have also had to take into account the recurrence relations 

C ( r . s )  c(l,li = c(r+1,9+1) c l r , s i  ~ ( 2 . 0 '  = c ( r + Z , s i  

C l r , s )  ~ ( 0 . 2 )  = ~ ( r , s + 2 ) .  

Here, instead of reproducing this table, we are going to consider in detail each of the 
eight possible cases separately, distinguishing subsequently several particular cases. 

3.1. r - s = 0 (mod 8) 

In this case we have C'r2s' - M(2"2, W), m = r + s, the dimension of the representation 
space is 2', I = [ f m ] ,  where [ ] stands for the function 'entier'. Since the conditions 
To = - y o ,  re yo = O  in ( 7 )  are satisfied, then n = 2 ' .  We can construct both the real and  
the imaginary Majorana representation. Now, considering the existence of the matrix 
K := [ ( e , ,  e k ) " ] ,  we have to introduce, as in tawrynowicz and Rembielinski (1985b), 
the sequence 

T a  = Y a  (Y = 1, .  . ., r YP = Yr+p  p = 1, .  . . , s. (11) 

(12) 

B (13) 

In turn we can construct the real matrices 
A = ( - '  O ' P I T 2 ~  . . Pr B = ( - '  ?s 

if s = 0 we set B = I,,. We verify directly their properties: 
A T  = (-1)rlr+l)/2 A BT = (-1)s(s-l)/2 
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The formulae (1 1)-( 14) are clearly independent of the case in question; they remain 
valid also thereafter, in the cases 3.2-3.8. Returning to our particular situation in 3.1 
we observe that the matrix K ,  if it exists, has to be an element of the Clifford algebra 
under consideration, namely 

K = a l ,  + ib”y, + cQPy,yP + idaPsy,yPy, + . . . (15) 

where the coefficients a, b”, cop, de@’, . . . , are real and antisymmetric with respect to 
the transposition of the indices a, p, 6,. . . . 

Now let us recall that by the existence of the matrix K we mean the existence of 
K satisfying the constraints of the problem, that is the conditions 7, = -ye., re ya = 0 
in ( 7 ) .  In other words, we have to find all the particular cases where the expression 
(15) is consistent with the conditions 

KY,TK-’  = - Ya (Y = 1,. . . , p - 1  

or, equivalently, 

K T n  = f n K  (Y = 1, .  . . , r ;  .Tp = -?@K (16) 

Of course, the procedure described remains valid also thereafter, in the cases 3.2-3.8, 
including the necessity and sufficiency of checking the system (16). In our particular 
situation we arrive at the following conclusion. 

In the case r - s = 0 (mod 8) the only possible pseudo-Euclidean Hurwitz pairs are 
those satisfying one of the following four sets of conditions: 

r = 4 ( k +  k,) 

p = 1, . . . , s. 

r = 4(  k +  k,) + 3  r = 4(  k +  k,) + 2  r = 4 ( k  + k o ) +  1 

s = 4 (  k - k,) 

K = B + K ~ = K  K = A + K  = K  K = B + K  = - K  K = A + K ~ = - K  

where + abbreviates ‘which implies’, k and k,  are integers, and k 3 0. Of course we 
assume, as everywhere in this paper, that r s O  and sa0 as well. The first particular 
case with k = ko is an example of a Euclidean Hurwitz pair, having already been 
considered in Lawrynowicz and Rembielinski (1985a, b); cf also Rembielinski (1980a, b, 
1981). Some other examples appear within each of the further cases 3.2-3.8. 

s = 4 ( k  + ko) + 3 s = 4 (  k - k,) + 2 s = 4 ( k  - ko) + 1 

T T 

3.2. r - s = 6 (mod 8) 

We turn our attention to this case, changing the naturally expected order of cases, 
because of methodological reasons: the case in question is the most analogous to the 
previous one. Our further programme is shown in figure 1. 

We have Cir,s)-M(2(m-2b’2 , W) and the dimension of the representation space is 
= 2’, the notation m, 1, and [ 3 being as in the case 3.1. The additional 

factor 2 in the latter equality comes from the fact that W is regarded as a subalgebra 
of M(2, e) .  All the conditions (7)  are satisfied, so n = 2‘, as before. We can construct 
the imaginary Majorana representation; its real analogue can only be constructed after 
doubling the dimension of the representation space. In analogy to the preceding case 
we conclude that the only four possibilities are the following: 

r = 4(  k +  k , ) + 6  

2 2[ (m- i ) l ’ ’  

r = 4( k + k,) + 7 r = 4(k  + k,)  r = 4(  k +  k,) + 1 
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1 

Figure 1 .  The chosen order of considering the cases r - s = I (mod 8). 

where k and ko are integers, and k 2 0. 

3.3. r - s = 1 (mod 8) 

The algebra is the direct sum of two matrix algebras: 

C(',S) 5 M(p/21, W) + M ( p / * I ,  W )  

and the dimension of the representation space is 2'+'. All the conditions (7) are 
satisfied, so n = 2'+'. Exactly as in the case 3.1, we can construct now the real as well 
as the imaginary Majorana representation. Because of (17), we cannot apply the same 
argument in order to distinguish explicitly all possible Hurwitz pairs. The necessary 
modification is taking into account that each irreducible representation of C(r9s)  can 
be in our case, owing to the congruence r - (s+ 1) = 0 (mod 8), embedded in an 
irreducible representation of the Clifford algebra C('-'+') which is isomorphic to the 
corresponding irreducible matrix ring. Consequently, K has to belong to C(r3st') and 
this is why we are led to the result that the only four possibilities are the following: 

( i )  r = 4 ( k +  k,) + 1 K = B J K ~ = K  or 

s = 4( k - k,) K = = - K  

(i i)  r = 4( k + k,) + 3  K = A J K ~ = K  or 

S = 4( k - k,) + 2 K = B J K ~  = - K  

(iii) r = 4( k + k,) + 4 K =iA$s+, or 

S = 4 ( k  - k,) i- 3 K = i B $ s + , + K T = ~  

(iv) r = 4( k +  k,) + 2 K = ~ A $ ~ , + '  or 

s = 4 ( k  - k,) + 1 K = i B $ s + , a ~ T  = - K  

where k and k, are integers, and k 2 0. 
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3.4. r - s = 5 (mod 8) 

Similarly as in the preceding case, the algebra is the direct sum of two matrix algebras: 
c ( r , s )  - ~ ( 2 [ ( m - W 2 1 ,  W) + ~ ( 2 [ ( m - 2 ) / 2 1  9 W) (18) 

and the dimension of the representation space is 2 x 2[(m-2)'21+' = 2'+'. The additional 
factor 2 in the latter equality comes from the fact that H is regarded as a subalgebra 
of M(2, C). All the conditions (7) are satisfied, so n = 2'+'. We can construct the 
imaginary Majorana representation; its real analogue can only be constructed after 
doubling the dimension of the representation space. Exactly as in the case 3.3, by 
(18), we observe that each irreducible representation of C(r*s) can be embedded in an 
irreducible representation of C(r+lss) ,  isomorphic to the corresponding matrix ring. 
Consequently, K has to belong to C(r+'35) ,  so the only four possibilities are the following: 
(i)  r = 4( k+ ko) + 7  K = A ~ ~ ~ = K  Or 

s = 4( k - ko) + 2 K = B + K ~  = - K  

(ii) r = 4 ( k +  ko) + 5 K = B + K ~ = K  or 

S = 4( k - ko) K = A + K ~  = - K  

(iii) r = 4( k + ko) + 6 K =iA+r+l or 
S = 4 ( k -  ko) 1 K = i B + r + l a ~ J  = K 

(iv) r = 4( k + ko) K =iAq,+I or 
s = 4(k - ko) + 3 K = iB+r+l K = - K  

where k and ko are integers, and k a 0 .  

3.5. r - s = 2 (mod 8)  

In this case C'r*r'-M(2m/2,1W) and the dimension of the representation space is 2'. 
Not all the conditions (7) are satisfied; in order to arrive at the relations = -ye,  
re yo = 0 we have to double the dimension 2': n = 2 x 2' = 2'+' by taking the direct sum 
of two irreducible copies of the corresponding Clifford algebra C".". In contrast to 
the case 3.4, we can now construct the real Majorana representation; its imaginary 
analogue can only be constructed after doubling the dimension of the representation 
space. By analysing the possibility of the construction of the matrix K in C(r*s) as well 
as by embedding its irreducible representations in irreducible representations of C('+','), 
and then of C''3s*2', we conclude that the only four possibilities are the following: 

(i)  r = 4( k + k,) + 5 K=iB+,+l+KT=K O r  

S = 4( k - ko) 3 K = A + K ~  = - K  

(i i)  r = 4( k + ko) + 2 K = B + K ~ = K  or 

s = 4 (  k - ko) K = B ? s + l ? s + 2 j ~ T  = - K  

(iii) r = 4( k + k,) + 3 K = A + K ~ = K  or 

S = 4( k - ko) + 1 K = i B ? s + l j K T  = - K  

(iv) r = 4( k + k,) + 4  K = B + s + l ? s + 2 j ~ T  = K or 

where k and ko are integers, and k 2 0. 
S = 4( k - ko) + 2  K = B + K ~  = - K  
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The particular case (19) with n = 8 and k = k ,  = 0, that is (n, r, s)  = ( 8 , 3 ,  l),  is of 
special interest to us because it provides an interpretation in the five-dimensional 
Kaluza-Klein theory; note that, by (lo),  dim V =  p = 5 .  This case, together with a dual 
case distinguished below (in the case 3.6),  will be treated in detail in Q 5 .  

3.6. r - s = 4 (mod 8) 

We have C(r,s)  z M ( 2 ( m - 2 ) / 2  , W )  and the dimension of the representation space is 
2 x 2['m-2)'21 = 2'. The additional factor 2 in the latter equality comes from the fact that 
W is regarded as a subalgebra of M(2, C). Not all the conditions ( 7 )  are satisfied; as 
in the preceding case we have to double the dimension 2 ' :  n = 2'+' by taking the direct 
sum of two irreducible copies of C'rss ) .  The real and imaginary Majorana representa- 
tions can only be constructed after doubling the dimension of the representation space. 
Similarly as in the case 3.5  we conclude that the only four possibilities are the following: 
( i )  r = 4( k + k,) + 6  K = ~ A ~ ~ + ~ + K ~ = K  or 

(ii) r = 4( k +  ko)+7 K = A + K ~ = K  or 
s = 4( k - ko) + 2 K = B + K ~ = - K  

s = 4( k - ko) + 3 K = A y , + l y r + 2 + ~ T  = - K  

(iii) r = 4( k + k,) + 4 K = B + K ~ ' = K  or 
s = 4 (  k - k,) K =iAy,,,+KT = - K  

K = A ~ K ~  = - K  

where k and k, are integers, and k 3 0. 
The particular case (20) with n = 8, k = 0, and ko = -1, that is ( n ,  r, s)  = ( 8 , 0 , 4 ) ,  is 

of special interest to us because it provides an interpretation in the five-dimensional 
Kaluia-Klein theory in addition to the already distinguished particular case (19) with 
n = 8 and k = ko= 0, that is ( n ,  r, s) = (8,3,1).  Moreover, the same particular case (20), 
but with n = 8 and k = ko = 0, that is ( n ,  r, s) = ( 8 , 4 , 0 ) ,  is an example of a Euclidean 
Hurwitz pair. Of course (20) with k = ko> 0, but without the restriction n = 8, is still 
Euclidean. 

(iv) r = 4 ( k  + k,) + 5 K = A Y ~ + ] ~ , + ~ + K ~  = K or 
s = 4 ( k +  k , )+  1 

3.7. r - s = 3 ( m o d 8 )  

In this case C'r.s'-M(2["21, C) and the dimension of the representation space is 2'. 
Not all the conditions (7) are satisfied; as in the cases 3.5 and 3.6 we have to double 
the dimension 2 ' :  n = 2'+' by taking the direct sum of two irreducible copies of C'r.s). 
In analogy to the preceding case, the real and imaginary Majorana representations 
can only be constructed after doubling the dimension of the representation space. 
Since in this case we choose C ( r 3 T i  irreducible and it is isomorphic to the matrix algebra 
M( 2["21, C), the only possible pseudo-Euclidean Hurwitz pairs are those satisfying 
one of the following two sets of conditions: 
(i) r = 4 ( k + k 0 ) + 3  K = A  or 

s = 4 ( k + k 0 )  K = B =  K ~ =  K 

(ii) r = 4( k + k,) + 5 K = A  or 
S = 4 ( k  - k,) + 2 K = B = K~ = - K  

where k and k, are integers, and k L 0. 
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3.8. r - s = 7 (mod 8) 

We have C(r.s) -  M(2["*], C )  and the dimension of the representation space is 2', 
exactly as in the case 3.7. In contrast to that case, all the conditions (7) are now 
satisfied, so n = 2'. We can construct the imaginary Majorana representation; its real 
analogue can only be constructed after doubling the dimension of the representation 
space. Arguing exactly as in the preceding case, we can see that the only two possibilities 
are the following: 
(i)  r = 4( k + k,) + 1 K = A  or 

S =4(k -  ko) 2 K = B J K ~ = - K  

(ii) r = 4( k + k,) + 7  K = A  or 

s=4(k-k , )  K = B J K ~ = K  

where k and k,  are integers, and k 3 0. The particular case (19) with n = 8 and k = k,  = 0, 
that is ( n ,  r, s )  = (8,7,0),  determines the well known octonion algebra. A detailed 
study of this algebra from the viewpoint of Hurwitz pairs has been given by Kanemaki 
(1986) recently. 

4. Realisation of the Katuza-Klein ideas within the concept of a Hunvitz pair 

In Q 2 we have distinguished four Hurwitz pairs providing an interpretation in the 
five-dimensional Kaluza-Klein theory: 

( n ,  r, S )  = (8,3,1) K = A J K  = K 

( n ,  r, s) = (8,3,1) 

(n, r, s) = (8,0,4) 

( n ,  r, s) = (8,0,4) 

K = i B 9 s + , + ~ T = - ~  

K = B + K ~  = K 

K =iAj,+,=$KT = -K. 

(22) 

Going further into the problem, we have to take into account the ideas of Kaluza 
(1921) and Klein (1926) in their contemporary form of the last decade (cf e.g. Lee 1984). 

Following the general spirit of these ideas we admit the following postulates. 
(i) The spacetime is of dimension p > 4. 
(ii) The spacetime contains a ( p  -4)-dimensional subspace whose compactification 

is connected with a spontaneous breaking of the symmetry of the vacuum. 
( i i i )  After the compactification the original spacetime has to be replaced by a fibre 

bundle with a four-dimensional base space MO of index 1 or 3 and a ( p  - 4)-dimensional 
compact typical fibre M, . In general Mx is the quotient space of a Lie group G and 
its subgroup Go. The fibre M, is often supposed to be a symmetric space. 

(iv) The vacuum solutions corresponding to the fibre bundle B"& with the fibre 
space M, generated by MO and M,, are obtained from the equations of the gravitational 
field with the energy-momentum tensor zero. Thus, if x = (x" ;  p = 0 , .  . . , 3 )  and 
y = ( y ' ;  j = 1, . . . , p -4) are any local coordinates in MO and M#, respectively, while 
z = ( z " ;  a = 1, .  . . , p )  denotes the corresponding coordinate system in M, the pseudo- 
Riemannian tensor of & has, in the vacuum case, the form 

0 being the zero 4 x ( p  - 4) matrix. 
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(v) The Katuia-Klein ansatz (set-up). For the low energy theory (zero modes) 
the pseudo-Riemannian tensor of BM has the form 

where A E ( x )  are gauge fields, e = eo/hc, e, is the electric charge, 

A,Au := A ;  ( x ) A !  (x )  K-b ( Y )  K (Y)gyk(Y) 

and K ’ , ( y )  are the Killing vectors connected with the transformations y ’ +  
y J +  ~ ” ( x ) K ’ , ( y )  of the group G treated as the isometry group of M#. 

In this paper we have to add the requirement for every point z of the fibre bundle 
B M  of the space S, tangent to M and associated with the vector space V, to form a 
Hurwitz pair ( V ,  S ) .  The equipment of the bundle B M  with such a structure is 
considered in P 5 .  Here, on the basis of the results of P 3, we are only going’to classify 
the possible Kaluia-Klein theories in the above sense. 

Hereafter the parameters k and ko are integers, and k z O ;  we exclude the case 
(U, r, s )  = (1,090). 

4.1. Hyperbolic theories with s = 1 

By cases 3.2 and 3.5, and especially (19), we have 

r = 8 k + 7  or 8 k + 3  K = A .  ( + I )  
The cases are hyperbolic in the sense that, by choosing a suitable basis (e,)  of V, in 
each case the metric K of V can be chosen as 

where In,2 stands for the identity i n  x t n  matrix, which can be checked by a direct 
calculation. For k = O  in the second case of (+1)  we arrive at the five-dimensional 
hyperbolic Katuia-Klein theory with ( n ,  r, s )  = ( 8 , 3 ,  1 ) .  Similarly, by cases 3.4 and 
3.6 we have 

r = 8 k + 6  K = iA+r+l (+2)  

r = 8 k + 5  K = A+,+ 5 + 2 .  (+4)  

r = 8 k + 6  K = iB+r+l (+3i) 

4.2. Hyperbolic theories with r = 0 

By cases 3.3 and 3.6, and especially (20), we have 

s = 8 k  or 8 k + 4  K = B. 

We exclude the case s = 8.0 = 0. The cases are hyperbolic in the same sense as in case 
4.1. For k = O  in the second case of (+i)  we recognise the five-dimensional hyperbolic 
Kaluia-Klein theory with (n ,  r, s )  = ( 8 , 0 , 4 ) .  Similarly, by cases 3.3 and 3.5 we get 

s = 8 k + 7  K = i BTS+, (+2i) 
s = 8 k + 7  K = iA+s+l 

s = 8 k + 6  K = B%+,%+z 
(+3)  

(+4i) 
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4.3. Symplectic theories with s = I 

By cases 3.1 and 3.6 we have 

r = 8 k + l  or  8 k + 5  K = A .  ( - 1 )  

The cases are symplectic in the sense that, by choosing a suitable basis (e , )  of V, in 
each case the metric K of V can be chosen as 

Similarly, by cases 3.3 and 3.5, especially ( 1 9 ) ,  we get 

r = 8 k + 2  or  8 k + 3  K = iB?,,, . (-21) 

For k = 0 in the second case of (-2i)  we arrive at the five-dimensional symplectic 
Kahia-Kle in  theory with ( n ,  r, s )  = ( 8 , 3 ,  1 ) .  Finally, by cases 3.3 we have 

r = 4 k + 2  K = iA?7+l .  ( - 3 )  

4.4. Sj~mplectic theories with r = 0 

By cases 3.2 and 3.5 we have 

s = 8 k + 2  or 8 k + 6  K = B. 

The cases are symplectic in the same sense as in case 4.5. Similarly, by cases 3.4 and 
3.6, and especially ( 2 0 ) ,  we get 

s = 8 k + 3  or 8 k + 4  K = iA+,+, . ( - 2 )  

For k = 0 in the second case of ( - 2 )  we recognise the five-dimensional symplectic 
Kaluia-Klein theory with (n, r, s )  = ( 8 , 0 , 4 ) .  Finally, by case 3.4 we have 

s = 8 k + 3  K = i B j l T , .  (-31) 

All the distinguished cases are shown in figure 2. The choice of the index function 
of the Kaluza-Klein theories with values m6 and m6i, m = 1 ,  2 ,  3 ,  4 ;  6 = 1 ,  -1  will be 
fully described in a separate paper (tawrynowicz et a1 1988). 

12 

16 ’ I 

16 ... 17 

Figure 2. The Kahza-Klein theories. 



5842 J Lawrynowicz and  J Rembielin'ski 

5. The concept of curved pseudo-Euclidean Hunvitz pairs and the corresponding 
generalised Fueter equations 

In order to have a full generality of the Kaluza-Klein theories, according to the 
postulates (i)-(v) of $3 ,  we need the concept of a curved pseudo-Euclidean Hurwitz 
pair or, rather, a pseudo-Riemannian Hurwitz pair. In general, one of the ways to 
realise this idea is to apply the moving frames formalism (cf e.g. Sternberg 1964, p p  
244-51). Because of our choice of a four-dimensional base space MO in the postulate 
(iii), it is especially convenient to work with a particular case of that formalism-the 
tetrad formalism (cf e.g. Hehl and Datta 1971). Thus, if z = ( z a )  and l ( z ) = ( l " ) ( z )  
are local coordinates in M around zo and on the tangent space to M at zo (the latter 
coordinates being interpreted as the inertial ones), then t h e j e l d  of tetrads A can locally 
be expressed by relations 

(a/ag")A:: = a / a z " .  (27) 

The pseudo-Riemannian tensor of BM, i.e. the pseudo-Riemannian metric of M, is 
locally given by gab = A ~ : A ~ T , ~ ,  where qmp is the metric of the tangent space. Hence 
the formula (24) can be written, in the tetrad field notation, as 

0 being the zero 4 x ( p  - 4) matrix. 
Now, consider the pair ( BM, V )  such that at every point z of M the tangent space 

to M at z forms, together with V, a pseudo-Euclidean Hurwitz pair. Then ( BM, V) is 
called a pseudo-Riemannian Hurwitz pair with metric (24) or, equivalently, with the 
field of tetrads (28). In terms of tetrads the multiplication scheme (4) for base vectors 
( E , )  and (e,) has to be replaced by 

E , ( Z ) e k  = C;,(z)ek 

c,k,(z) = A : ( z ) c ~ ~  

c a ( z ) c b ( z )  + C b ( z ) c a ( z )  2gab(z)zn a, b = 1,. . . , p (30) 

a =  1,. . . , p  j ,  k = 1, . . . , n (29) 

where 

and the basic formula ( 5 )  has to be replaced by 

where 

c, := C, := KC,TK- ' .  

The concept of (BM, V )  can still be generalised by replacing V with a pseudo- 
Riemannian or symplectic manifold V whose tangent bundle consists of the spaces 
meant in the previous sense. The main motivation for such a generalisation is given 
in the theorem of Gaveau er a1 (1982, 1985). If the principal fibre bundle P(V,  G), 
where V is the base space and  G is a semi-simple Lie group, is not trivial and admits 
solenoidal connection, then V is multiply connected. The theorem motivates in an  
elegant way the assumption of multiple connectivity made in earlier papers, e.g. by 
Misner and  Wheeler (19571, Dirac (1964), Sakharov (1972), tawrynowicz and Wojtczak 
(1974, 1977) and Lawrynowicz (1982); cf also Henkin (1981). 
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Let us consider now a continuously differentiable V-valued mapping f with a 
domain in M and the related spinor 

*= K ( f l , .  . . ,f")' (31) 

where n = dim K Then it seems natural, following theorem 3 of our preceding paper 
(Lawrynowicz and Rembielinski 1986), to define the generalised Fueter equation (an 
analogue of the Cauchy-Riemann equations) as 

[E 'a+r+l(- iyaVu)+ I , V r + ' ] ,  = o (32)  

and to call the mapping f, related to any solution of (32) given by (31), a regular 
mapping. Here V", a = 1,. . . , p ,  a # p ( p  = r + s + 1 = dim MI), and Vri' are the covariant 
derivative analogues of a" = a /az"  known from the flat case. We are going to calculate 
these operators effectively. 

Consider arbitrary rotations of the local coordinates l ( z )  around zo in the tangent 
space to M at zo: ~ ( Z ) H ~ ' ( Z ) .  If we define A by l ' ( z ) = A ( z ) l ( z ) ,  then the field of 
tetrads (27) is transformed according to the formula 

A ?  = A g A t  (33) 

V u  = ~ : [ ( a / a z " ) + r , ]  (34) 

where [A;] = A. Then, for any representation D = D [ A ( z ) ] ,  we have 

where, according to (271, (a/aza)A: = a / a l "  and r, is the affine connection. Under 
the transformation ~ ( z ) H  l ' ( z )  the connection r, is transformed according to the 
standard formula 

In order to express r, by the tetrads, we denote by E,, the generators of the 
semi-simple Lie group SO(r+ 1, s) in the representation D [ A ] :  
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Turning our attention to G", by (34), we obtain 
1 '  p y  h a T, = A",a, + j l X  A , j A c , A v b , o .  

Now we can easily pass to T":  

To  = A "Od, + 4 i I p , A  p h A  ""A 

D[.I] = exp(fiwG'IGp) exp(itr"y,) (40) 
D[ 11 = exp(iu'ya) exp(-+iw"pXC,,) (41) 

-iy,d'" + ~,,d"" = D[.l](-iy,a" + I,,~"')D[,I]. 

(39) 

with an obvious meaning of A"" and AX,,. Therefore, by (37) and (38) we have 

where u a  are real parameters and, by (32), 

(42) 

Formulae (39)-(42) suffice for studying the symmetries in the Kaluia-Klein theories 
yielded by the generalised Fueter equations of the type (32). 

The action integral corresponding to the matter, gauge and gravitational fields has 
to consist of two addends: the matter part I,,,, and the gravitational part ZgraL. We 
consider functionals of the form 

I,,,, = d4z det[A"'1Lmd~t[qII, c,,qu] I 
and 

Igrdb = - ( 1 / 1 6 ~ ) G  d4z det[A""]R I 
where G is the gravitational constant and  R is the scalur curvature on M. The 
Dirichlet-like equations of motion (32) can be derived from the variational principle 
for I,,,, + Igra,, where the variations have to be taken with respect to the spinors q 
and tetrads A .  The formulae obtained are the starting point for quantisation according 
to one of known methods, e.g. the harmonic expansion method and quantisation of 
the zero modes; cf Mecklenburg (1984) and Strathdee (1986). 

6. Symmetries in the Katuza-Klein theories yielded by the generalised Fueter 
equations 

Formulae (39)-(42) show that the internal symmetries in the Kaluza-Klein theories 
are described by the structural groups S O ( r +  1, s) whose generators Imp have been 
used in those formulae. Besides, by the same formulae, the invariance group of any 
generalised Fueter equation (32) is O( r +  1, s) E T'"" , where O( r + 1, s) is the group 
of pseudorotations in T,M including S O ( R  + 1, s) as its subgroup, T'+'+' is the 
corresponding group of translations, and G denotes their semi-direct multiplication. 
Explicitly, we have 

z ' =  . l z  + U .2 E O( I + 1, s)  

where 

Y'(z ')  = D[.lpP(Z) U E T""'. 

In  particular we may take 

A O T  
0 z2 
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h EO( r, s), not including the direction r + 1, z2  E Z 2 ,  the cyclic two elements-group, 0 
being the zero 1 x ( r  + s)  matrix, so that D is the spinor representation of the group 
2, x Pin( r, s). 

The last statement enables us to give a new interpretation of the generalised Fueter 
equations (32). Replacing O( r, s) by its subgroup SO( r, s) and defining 

(a) the SO ellipticity of (32) as corresponding to SO(s )  = SO(0, s )  (independent of 
whether K~ = K or . K ~  = - K ) ,  

(b) the SO hyperbolicity of (32) as corresponding to SO(1, s), 
we arrive at a duality of SO-hyperbolic and SO-elliptic Dirac-like equations (32) in 
the following cases: 

s = l  r = 8 k + 3  r = O  s = 8 k + 4  

c a s e ( + l )  - case(-2) (43) 
case (-2i) - case ( + i )  

s = l  r = 8 k + 5  r = O  s = 8 k + 6  

case (+4) - case (-i) 
case (-1) - case (+4i). 

(44) 

Then, for the sake of simplicity, we assume that in the cases (-2i) and (-2) in (43) 
with the same k we have the same second member V = Vk in the Hurwitz pairs in 
question and consider their duality: 

s = l  r = 8 k + 3  r = O  s = 8 k + 4  
case (+1) *-, case (-2) 
case (-2i) - case ( + i ) .  

(45) 

Similarly, we assume that in the cases (-1) and (4) in (44) with the same k we have 
the same second member V = V 'k in the Hurwitz pairs concerned and consider their 
duality: 

s = l  r = 8 k + 5  r = O  s = 8 k + 6  
case (+4) - case (-i) 
case (-1) - case (+4i). 

In  order to better understand these dualities we have to observe that up to this 
section we have taken into account only the symmetry between the Hurwitz pairs 
corresponding to ( r  + 1, s )  and (s + 1, r) ,  expressed precisely by the formulae (13) and 
(14) and figure 2. In this section we are taking into account not only that symmetry, 
but also another, namely one between the Hurwitz pairs corresponding to (r, s )  and 
(s, r), expressed precisely by the formulae (1 1) and (12). 

I f  we wished to extend this procedure for the other cases appearing in figure 2, we 
should go outside the class of Kahia-Klein theories. 

For example, we concentrate on the cases (45) with k = 0, i.e. the cases (22), and put 
x = (x ' ,  x2, x3) and T = x4 

for MO consisting of all (x, T), 

for M, consisting of all xo. According to the considerations of cases 3.5 and 3.6, we 
are taking in V, dim V = 8, the purely imaginary Majorana representation and the 
eight-dimensional spinors in equation (32). 

5 xo= x 
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Let us denote by p = 0 , .  . . , 3 ,  the Clifford matrices corresponding to the 
representation in question. Then Tfi can be expressed by the usual four-dimensional 
Majorana representation y,, p = 0, . . . , 3 ,  as follows: 

0, being the zero m x m matrix; 

The matrices Tfi can be ‘diagonalised’ with the help of the following transformation S :  

Hence the transformations shown in (45) by arrows are fully determined by the 
transformation S in (47). 

Thus we may confine ourselves to the symplectic cases (-2i) and  (-2). We 
distinguish in 9 four-dimensional spinors v’, and K: 

where 

Then in both 

qD = Y ” ~ ( P +  + i y - ) .  

cases the Fueter equation (32) becomes 

( - y f i v f i + + , o ~ ) v r ~ = o  
so that q,, has to be interpreted as the Diracjield. In  such a way we get an  additional 
motivation for calling the Fueter equation (32) a Dirac-like equation as we already did. 

In the simplest case of M = M4 x SI,  mentioned in the introduction, independently 
of whether the case is hyperbolic: (+ l l ,  ( + i )  or symplectic: (-2i), (-2),  the vacuum 
solution (23) in the postulate ( i i i )  of 84 has the form 

0 being the zero 1 X 4  matrix, where [ v o h ]  is the usual Minkowski metric or  the 
anti-Minkowski metric. Then the tensor (24) in the Kaluza-Klein ansatz takes the form 

The corresponding tetrad field (28) becomes 

0 being the zero 1 x 4  matrix. 
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If we denote by R the radius of S ’ ,  then the metric (49) is invariant under any 
transformation of the form 

x’ = x T ‘ =  T +  R4(x)  A: = A, -(R/e)a,4(x).  

In the cases (-2i) and (-2) the Fueter equation (48) becomes 

{-r,[a”-i(e/R)A,]+a‘r,}\~(x, T ) = O  

and we also have the transversality condition a‘\, = ( i / R ) v D .  Hence 

\ D ( %  T ,  = y D ( x )  exp[( i /R)Tl .  

Finally we obtain 

{ - 7, [ - i ( e/ R )A, ] + (i/ R ) Z,}\ ( x ) = 0. (50) 

We conclude that in the symplectic cases (-2i) and (-2) the Fueter equation (50) 
describes the Dirac field of mass - l /R ,  interacting with the electromagnetic field. 
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